

Implicit Differentiation:

Sind
$$\frac{dy}{dx}$$
 Sor $xy=4$.

Method I: Isolate y

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{4}{x} \right] = \frac{0 \cdot x - 4 \cdot 1}{x^2} = \frac{-4}{x^2}$$

Method II: $xy=4$

Take derivative of both sides

$$\frac{dy}{dx} = \frac{1}{x^2}$$

$$\frac{dy}{dx} = \frac{1}{x^2}$$

$$\frac{dy}{dx} = \frac{1}{x^2}$$

$$\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{1}{x^2}$$

$$\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{1}{x^2}$$

$$\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{1}{x^2}$$

Sind
$$\frac{dy}{dx}$$
 Sor $x^2 + y^2 = 25$

To isolate $y \rightarrow y^2 = 25 - x^2$

$$y = \pm \sqrt{a5 - x^2}$$
Sind $\frac{dy}{dx}$
Using Implicit Diff.
$$x^2 + y^2 = 25$$

$$\frac{d}{dx} \left[x^2 + y^2 \right] = \frac{d}{dx} \left[25 \right]$$

$$\frac{d}{dx} \left[x^2 \right] + \frac{d}{dx} \left[y^2 \right] = 0$$

$$2x + 2y \cdot \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{2x}{2y}$$

$$\frac{dy}{dx} = -\frac{x}{2y}$$

Sind
$$\frac{dy}{dx}$$
 Sor $x^4 - y^3 = 2xy$

$$\frac{d}{dx} \left[x^4 - y^3 \right] = \frac{d}{dx} \left[2xy \right]$$

$$\frac{d}{dx} \left[x^4 \right] = \frac{d}{dx} \left[y^3 \right] = 2 \frac{d}{dx} \left[xy \right]$$

$$4x^3 - 3y^2 \cdot \frac{dy}{dx} = 2 \left(\frac{d}{dx} \left[x \right] \cdot y + x \cdot \frac{d}{dx} \left[y \right] \right)$$

$$4x^3 - \left(3y^2 \frac{dy}{dx} \right) = 2y + 2x \frac{dy}{dx}$$

$$4x^3 - 2y = 2x \frac{dy}{dx} + 3y^2 \frac{dy}{dx}$$

$$4x^3 - 2y = (2x + 3y^2) \frac{dy}{dx}$$

$$4x^3 - 2y = (2x + 3y^2) \frac{dy}{dx}$$

$$4x^3 - 2y = (2x + 3y^2) \frac{dy}{dx}$$

Sind
$$\frac{dy}{dx}$$
 for $\cos y + \chi^2 = y - 8$

$$\frac{d}{dx} \left[\cos y + \chi^2\right] = \frac{d}{dx} \left[y - 8\right]$$

$$\frac{d}{dx} \left[\cos y\right] + \frac{d}{dx} \left[x\right] = \frac{dy}{dx} - \frac{dy}{dx}$$

$$-\sin y \cdot \frac{dy}{dx} + \partial x = \frac{dy}{dx}$$

$$\partial x = \frac{dy}{dx} + \sin y \cdot \frac{dy}{dx}$$

Sind
$$\frac{dy}{dx}$$
 for $\tan \frac{x}{y} = x + y$ $\frac{d}{dx} \left[\frac{x}{y} \right]$

$$\frac{d}{dx} \left[\tan \frac{x}{y} \right] = \frac{d}{dx} \left[x + y \right]$$

$$\frac{d}{dx} \left[\tan \frac{x}{y} \right] = \frac{d}{dx} \left[x + y \right]$$

$$\frac{d}{dx} \left[\tan \frac{x}{y} \right] = \frac{d}{dx} \left[x + y \right]$$

$$\frac{d}{dx} \left[\tan \frac{x}{y} \right] = \frac{d}{dx} \left[x + y \right]$$

$$\frac{dy}{dx} = 1 + \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{dy}{dx} + y^2 \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx}$$

Sind eqn of tan, line to the curve
$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = \frac{1}{4\chi} \left[(1,1) \right].$$

$$\chi^{2} + \chi y + y^{2} = \frac{1}{4\chi} \left[(1,1) \right].$$

$$\chi^{2} + \chi y + y^{2} = \frac{1}{4\chi} \left[(1,1) \right].$$

$$\chi^{2} + \chi y + y^{2} = \frac{1}{4\chi} \left[(1,1) \right].$$

$$\chi^{2} + \chi y + y^{2} = \frac{1}{4\chi} \left[(1,1) \right].$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + y^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + \chi y + \chi^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + \chi^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + \chi^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + \chi^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + \chi^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + \chi^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi y + \chi^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} + \chi^{2} = 3 \quad \text{at } (1,1).$$

$$\chi^{2} + \chi^{2} + \chi^{2}$$

Sind eqn of tan. line to the curve

Siven by
$$\chi^2 + y^2 = (2\chi^2 + 2y^2 - \chi)^2$$
 at $(0,\frac{1}{2})$.

Verify the point

 $0^2 + (\frac{1}{2})^2 = (2 \cdot 0^2 + 2 \cdot (\frac{1}{2})^2 - 0)^2$
 $\frac{1}{4} = (\frac{1}{2})^2$
 $\chi^2 + y^2 = (2\chi^2 + 2y^2 - \chi)$
 $2\chi^4 + 2y \cdot \frac{dy}{dx} = 2(2\chi^2 + 2y^2 - \chi) \cdot (y\chi^4 + yy \cdot \frac{dy}{dx} - 1)$
 $2(\frac{1}{2}) \cdot m = 2(2(\frac{1}{2})^2) \cdot (4 \cdot \frac{1}{2} \cdot m - 1)$
 $m = 2m - 1$
 $m = 2m - 1$

Given
$$x^2 + y^2 = r^2$$
 and $ax + by = 0$

1) Sind $\frac{dy}{dx}$ for each equation. $-2ax = -by$
 $x^2 + y^2 = r^2$ $ax + by = 0$
 $2x + 2y\frac{dy}{dx} = 0$ $ax + by = 0$
 $2x + 2y\frac{dy}{dx} = 0$ $ax + by = 0$

2) Multiply these two $\frac{dy}{dx}$, and Simplify.

 $\frac{dy}{dx} = \frac{-x}{y}$
 $\frac{dy}{dx} = \frac{-a}{by}$
 $\frac{-x}{y} \cdot \frac{-a}{b} = \frac{ax}{by} = -\frac{by}{by} = -1$
 $x^2 + y^2 = r^2$ $ax + by = 0$

Circle line

Orthogonal

